NanoBioLab
www.nanobiolab.btbs.unimib.it
Staff: Paolo Tortora, Davide Prosperi, Miriam Colombo
Non-permanent staff: Svetlana Avvakumova Elisabetta Galbiati, Jessica Bertolini, Das Pradip, Rany Rotem, Lucia Salvioni, Maria Antonietta Rizzuto, Marco Giustra,
NanoBioLab team is focused on three main areas of research
1 ) BIOTECHNOLOGY
- Production and modification of proteins
- Protein nanoparticles
2) COLLOIDAL CHEMISTRY
- Magnetic NPs
- Plasmonic NPs
- Polymeric NPs
- Liposomes
- Biodegradable NPs
- Micelles
3) BIOLOGY
- Cell uptake
- Cytotoxicity
- Cellular pathways
LINES OF RESEARCH
• Oncology
• Inflammatory
• Alternative administration routes
• Cosmetics
• Nanocarriers to cross bio-barriers
—————————————————NANOBIOSENSORS
The recent advances in nanotechnology, combined with modern tools from surface chemistry, have provided a considerable support to the exploration of biorecognition processes. In collaboration with the “Complex Fluids and Molecular Biophysics Lab” of the University of Milan, we have developed a new, straightforward method based on light scattering for the study of ligand-receptor interactions occurring at the surface of “phantom” colloids. The key factor is the use of perfluorinated nanospheres index-matched with water and therefore optically undetectable except when non-fluorinated molecules coat their surface, thus acting as an amplifier of molecular interactions. This label-free Dispersed Phantom Scatterer (DPS) method, has been first assessed through the determination of the binding constant of vancomycin with its peptidic counterpart and the investigation of the antibiotic mechanism of action. In this context, we have highlighted the role of chelate effect and neighbouring hindrance in the activity of this glycopeptide antibiotic. Subsequently, the particles, already optically phantom, have also been made biologically “invisible” through PEG coating and decorated by interacting proteins, thus providing a mean to investigate the biological properties of proteins, once immobilized onto nanostructured surfaces. DPS appears as a new, sensitive and reliable tool for the quantitative determination of protein-ligand, protein-protein and carbohydrate-protein interactions occurring at the surface of nanoparticles.
An alternative approach investigated in our lab to study ligand-receptor interactions makes use of nanoscale magnetic switches. The development of nanosystems applied to rapid and sensitive measurement of biomarkers in fluid samples is a current major goal in diagnostic biomedicine. We develop ligand-functionalized magnetic nanospherical probes, which, due to the reversible alteration of their microaggregation state induced by ligandreceptor specific interaction, are able to sense the occurred biorecognition event as changes in the T2 relaxation time of surrounding water molecules. The method is very sensitive, providing concentration- and time-dependent responses. Furthermore, we have demonstrated that the magnetic assay is able to quantitatively determine the biomarker concentration from T2 linear correlation, thereby supplying a rapid, yet accurate, assay with sensitivity in the nanomolar to femtomolar range, depending on the affinity of the interaction.
—————————————————-ENGINEERING TARGETING MOLECULES FOR NANOPARTICLE BIOCONJUGATION
Targeting molecules are produced by genetic engineering and purified in order to gain a high level of control on the number and orientation of the protein on the nanoparticle surface.
We use a bimodular approach, in which the fusion protein includes 1) a capture moiety for the site-specific immobilization on the nanoparticle pre-functionalized with a suitable inhibitor or affinity ligand, and 2) a targeting peptide designed to achieve an effective tumor homing.
—————————————————-TUMOR DIAGNOSTICS
A primary challenge in cancer diagnosis is the development of effective molecular contrast agents for early detection of malignancies. Among the different kinds of tumors affecting human kind, mammary carcinoma is of particular importance, as it is the most common type of malignant tumor after lung cancer in adult women, and the fifth most common cause of death for cancer disease. Nanoparticles functionalized with cancer-specific targeting ligands can be used to image tumors and detect peripheral metastases. Furthermore, the outside layer should protect the core from degradation. Magnetic nanoparticles appear as a particularly promising tool for cancer diagnostics, as the associated detection technique is magnetic resonance imaging (MRI), which is already available in many clinical institutions. MRI exhibits high spatial resolution, however it requires a sensitivity enhancement, which may be provided by paramagnetic contrast agents. We develop novel hybrid nanoparticles consisting of a magnetic core, useful as MRI contrast agent, and an organic shell responsible for the cell receptor targeting action. In particular, these particles must fulfill several criteria in order to be recruited for use as nanodiagnostics: high resolution, accuracy and sensitivity of detection, prolonged circulation in the vasculatures and target selectivity. Such properties might be provided by using magnetic nanoparticles coated with ligands selective for protein biomarkers overexpressed by breast cancer cells, such as “Human Epidermal growth factor Receptor 2” (HER2). In addition, these particles should ideally have no toxicity and be able to interact in a physiological way with biological tissues. Finally, since membrane receptors are endocytosed as part of their normal response to ligand binding, magnetic nanoparticles have to follow physiological pathways when internalized. All these issues are appropriately addressed in the proposed research.
—————————————————-DIAGNOSIS AND THERAPIES WITH NANOPARTICLES (THERANOSTICS)
TUMOR TARGETING. Drug-loaded nanoparticles can be used to target selective cancer cells resulting in the localization of the therapeutic action, which is expected to prevent the
typical side-effects usually encountered with conventional chemotherapeutics. We are developing colloidal and biomimetic nanoparticles that are intended to improve the targeting efficiency and bioavailability of drugs.
INFLAMMATORY DISEASES. Bioengineered nanoparticles can be developed to localize, monitor and quantify the early stages of inflammatory bowel diseases (IBDs), particularly Crohn disease and ulcerative colitis inflammatory diseases, and to treat aggressive inflammatory disorders including IBDs, rheumatoid arthritis, transplant rejection, edema, sepsis, and other inflammatory conditions.
ANTIVIRAL THERAPEUTICS. Nanotechnology has potential in HIV treatment by two approaches: 1)improving the pharmacokinetic properties of antiretroviral drugs, and 2) assisting drugs to cross the biological barriers (e.g., the blood brain barrier) to target the virus reservoirs.
ALTERNATIVE ADMINISTRATION ROUTES TO THE INTRAVENOUS ONE. Nanotechnology has potential in HIV treatment by two approaches: 1)improving the pharmacokinetic properties of antiretroviral drugs, and 2) assisting drugs to cross the biological barriers (e.g., the blood brain barrier) to target the virus reservoirs.
LIST OF PUBLICATIONS from 2015
[1] E. Cova§, M. Colombo§, S. Inghilleri, M. Morosini, S. Miserere, J. Peñaranda-Avila, B. Santini, D. Piloni, S. Magni, F. Gramatica, D. Prosperi, F. Meloni. Antibody-engineered nanoparticles selectively inhibit mesenchymal cells isolated from patients with chronic lung allograft dysfunction Nanomedicine, 2015,10, 9-23. codice Scopus: 2-s2.0-84921455218; Doi: 10.2217/nnm.13.208
[2] E. Galbiati, M. Cassani, P. Verderio, E. Martegani, M. Colombo, P. Tortora, S. Mazzucchelli, D. Prosperi Peptide-nanoparticle ligation mediated by cutinase fusion for the development of cancer cell-targeted nanoconjugates. Bioconjugate Chem., 2015, 26, 680-689. codice Scopus: 2-s2.0-84927749383; Doi: 10.1021/acs.bioconjchem.5b00005
[3] L. Fiandra, M. Colombo, S. Mazzucchelli, M. Truffi, B. Santini, R. Allevi, M. Nebuloni, A. Capetti, G. Rizzardini, D. Prosperi, F. Corsi Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine: NBM, 2015, 11, 1387-1397. codice Scopus: 2-s2.0-84937149202; Doi: 10.1016/j.nano.2015.03.009
[4] B. Santini, I. Zanoni, R. Marzi, C. Cigni, M. Bedoni, F. Gramatica, L. Palugan, F. Corsi, F. Granucci, M. Colombo Cream formulation impact on topical administration of engineered colloidal nanoparticles. PLoS One, 2015, DOI: 10.1371/journal.pone.0126366. codice Scopus: 2-s2.0-84930670433; Doi: 10.1371/journal.pone.0126366
[5] F. Villafiorita-Monteleone, A. Cappelli, M. Paolino, M. Colombo, E. Cariati, A. Mura, G. Bongiovanni, C. Botta Aggregation-induced FRET in polybenzofulvene/dye nanoparticles. J. Phys. Chem. C, 2015, 119, 18986-18991. Codice Scopus: 2-s2.0-84939824312; Doi: 10.1021/acs.jpcc.5b05589
[6] A. Orlando, M. Colombo, D. Prosperi, M. Gregori, A. Panariti, I. Rivolta, M. Masserini, E. Cazzaniga Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility
and inflammatory responses of endothelial cells and macrophages. J. Nanopart. Res., 2015, 17, 351. codice Scopus: 2-s2.0-84940508465; Doi: 10.1007/s11051-015-3148-5
[7] A. Orlando, M. Colombo, D. Prosperi, F. Corsi, A. Panariti, I. Rivolta, M. Masserini, E. Cazzaniga Evaluation of gold nanoparticles biocompatibility: a multiparametric study on
cultured endothelial cells and macrophages. J. Nanopart. Res., 2016, 18, 58. codice Scopus: 2-s2.0-84958758565; Doi: 10.1007/s11051-016-3359-4
[8] L. Salvioni, L. Fiandra, M.D. Del Curto, S. Mazzucchelli, R. Allevi, M. Truffi, L. Sorrentino, B. Santini, M. Cerea, L. Palugan, F. Corsi, M. Colombo Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol. Res., 2016, 110, 122. codice Scopus: 2-s2.0-84975087278; Doi: 10.1016/j.phrs.2016.05.016
[9] C. Finetti, L. Sola, M. Pezzullo, D. Prosperi, M. Colombo, B. Riva, S. Avvakumova, C. Morasso, S. Picciolini, M. Chiari Click chemistry immobilization of antibodies on polymer coated gold
nanoparticles. Langmuir, 2016, 32, 7435. codice Scopus: 2-s2.0-84979867979; Doi: 10.1021/acs.langmuir.6b01142
[10] R. Vago, V. Collico, S. Zuppone, D. Prosperi, M. Colombo Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacol. Res., 2016, 111, 619. codice Scopus: 2-s2.0-84979663313; Doi: 10.1016/j.phrs.2016.07.007
[11] S. Avvakumova, E. Galbiati, L. Sironi, S.A. Locarno, L. Gambini, C. Macchi, L. Pandolfi, M. Ruscica, P. Magni, M. Collini, M. Colombo, F. Corsi, G. Chirico, S. Romeo, D. Prosperi. Theranostic nanocages for imaging and photothermal therapy of prostate cancer cells by active targeting of neuropeptide-y receptor. Bioconj. Chem. 2016, 12, 2911. codice Scopus: 2-s2.0-85006893268; Doi: 10.1021/acs.bioconjchem.6b00568
[12] M. Colombo, L. Fiandra, G. Alessio, S. Mazzucchelli, M. Nebuloni, C. De Palma, K. Kantner, B. Pelaz, R. Rotem, F. Corsi, W.J. Parak, D. Prosperi. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 2016, 7, 13818. codice Scopus: 2-s2.0-85006372741; Doi: 10.1038/ncomms13818.
[13] L. Salvioni, E. Galbiati, V. Collico, G. Alessio, S. Avvakumova, F. Corsi, P. Tortora, D. Prosperi*, M. Colombo* Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int. J. Nanomed. 2017, 12, 2517. codice Scopus: 2-s2.0-85017186676; Doi: 10.2147/IJN.S127799
[14] U.M. Musazzi, B. Santini, F. Selmin, V. Marini, F. Corsi, R. Allevi, D. Prosperi, F. Cilurzo, M. Colombo*, P. Minghetti* Impact of semi-solid formulations on skin penetration of iron oxide nanoparticles. J. Nanobiotechnol. 2017, 15, 14. codice Scopus: 2-s2.0-85013072506; Doi: 10.1186/s12951-017-0249-6.
[15] P. Rainone, B. Riva, S. Belloli, F. Sudati, M. Ripamonti, P. Verderio, M. Colombo, B. Colzani, M. C. Gilardi, R. M. Moresco, D. Prosperi Development of 99mTc-radiolabeled nanosilica for targeted detection of her2-positive breast cancer. Int. J. Nanomed. 2017, 12, 3447. codice Scopus: 2-s2.0-85018418329; Doi: 10.2147/IJN.S129720
[16] E. Cova, S. Inghilleri, L. Pandolfi, M. Morosini, S. Magni, M. Colombo, D. Piloni, C. Finetti, G. Ceccarelli, L. Benedetti, M.G. Cusella, M. Agozzino, F. Corsi, R.
Allevi, S. Mrakic-Sposta, S. Moretti, S. De Gregori, D. Prosperi, F. Meloni Bioengineered gold nanoparticles targeted to mesenchymal cells from patients with bronchiolitis obliterans syndrome does not rise the inflammatory response and can be safely inhaled by rodents. Nanotoxicology. 2017, 11, 534. codice Scopus: 2-s2.0-85018241035; Doi: 10.1080/17435390.2017.1317862.
[17] M. Truffi§, M. Colombo§, J. Peñaranda-Avila, L. Sorrentino, F. Colombo, M. Monieri, V. Collico, P. Zerbi, E. Longhi, R. Allevi, D. Prosperi, F. Corsi Nano-targeting of mucosal addressin cell adhesion molecule-1 identifies bowel inflammation foci in murine model. Nanomedicine 2017, 12, 1547. codice Scopus: 2-s2.0-85021624013; Doi: 10.2217/nnm-2017-0004.
[18] L. Pandolfi, M. Bellini, R. Vanna, C. Morasso, A. Zago, S. Carcano, S. Avvakumova, J.A. Bertolini, M. A. Rizzuto, M. Colombo, D. Prosperi H-ferritin enriches the curcumin uptake and improves the therapeutic efficacy in triple negative breast cancer cells. Biomacromolecules 2017, 18, 3318. codice Scopus: 2-s2.0-85031280368; Doi: 10.1021/acs.biomac.7b00974.
[19] M.R. Marinozzi, L. Pandolfi, M. Malatesta, M. Colombo, V. Collico, P. M-J. Lievens, S. Tambalo, C. Lasconi, F. Vurro, F. Boschi, S. Mannucci, A. Sbarbati, D. Prosperi, L. Calderan
Innovative approach to safely induce controlled lipolysis by superparamagnetic iron oxide nanoparticles-mediated hyperthermic treatment. Int. J. Biochem. Cell Biol. 2017, 93, 62. codice Scopus: 2-s2.0-85032804374; Doi: 10.1016/j.biocel.2017.10.013
[20] D. Prosperi, M. Colombo, I. Zanoni, F. Granucci Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Semin Immunol. 2017, 34, 61. codice Scopus: 2-s2.0-85028365308Doi: 10.1016/j.smim.2017.08.010
[21] F. Villafiorita-Monteleone, E. Kozma, U. Giovanella, M. Catellani, M. Paolino, V. Collico, M. Colombo, A. Cappelli, C. Botta Red and deep-red emissive polymeric nanoparticles based on polybenzofulvene and perylenediimide derivatives. Dyes Pigm. 2018, 149, 331. codice Scopus: 2-s2.0-85032863525; Doi: 10.1016/j.dyepig.2017.10.010
[22] B. Colzani, L. Pandolfi, A. Hoti, P.A. Iovene, A. Natalello, S. Avvakumova, M. Colombo, D. Prosperi Investigation of antitumor activities of trastuzumab delivered by PLGA
nanoparticles. Int. J. Nanomed. 2018, 13, 957. codice Scopus: 2-s2.0-85042351947; Doi: 10.2147/IJN.S152742
[23] B. Riva, M. Bellini, E. Corvi, P. Verderio, E. Rozek, B. Colzani, S. Avvakumova, A. Radeghieri, M.A. Rizzuto, C. Morasso, M.Colombo, D. Prosperi Impact of the strategy adopted for drug loading in nonporous silica nanoparticles on the drug release and cytotoxic activity. J. Coll. Int. Scie. 2018, 519, 18. codice Scopus: 2-s2.0-85042379821; Doi: 10.1016/j.jcis.2018.02.040
[24] M. Truffi§, M. Colombo§, L. Sorrentino, L. Pandolfi, S. Mazzucchelli, F. Pappalardo, C. Pacini, R. Allevi, A. Bonizzi, F. Corsi, D. Prosperi Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci. Rep. 2018, 8, 6563. codice Scopus: 2-s2.0-85045989588; Doi: 10.1038/s41598-018-24968-x
[25] M. Vitali, V. Rigamonti, A. Natalello, B. Colzani, S. Avvakumova, S. Brocca, C. Santambrogio, J. Narkiewicz, G. Legname, M. Colombo, D. Prosperi, R. Grandori Conformational properties of intrinsically disordered proteins bound to the surface of silica nanoparticles. BBA–Gen. Subjects, 2018, 18, 30088. codice Scopus: 2-s2.0-85045989588; Doi: 10.1016/j.bbagen.2018.03.026
[26] E. Galbiati, S. Avvakumova, A. Larocca, M. Pozzi, S. Messali, P. Magnaghi, M. Colombo, D. Prosperi, P. Tortora A fast and straightforward procedure for vault nanoparticle purification and the characterization of its endocytic uptake. BBA–Gen. Subjects 2018, 10, 2254. codice Scopus: 2-s2.0-85050551518; Doi: 10.1016/j.bbagen.2018.07.018
[27] M. Colombo, M. A. Rizzuto, C. Pacini, L. Pandolfi, A. Bonizzi, M. Truffi, M. Monieri, F. Catrambone, M. Giustra, S. Garbujo, L. Fiandra, F. Corsi, D. Prosperi, S. Mazzucchelli Half-chain cetuximab nanoconjugates allow multitarget therapy of triple negative breast cancer. Bioconjug. Chem., 2018, 29, 3817. codice Scopus: 2-s2.0-85055653452; Doi: 10.1021/acs.bioconjchem.8b00667
[28] P. Das, M. Colombo, D. Prosperi Recent advances in magnetic fluid hyperthermia for cancer therapy. Coll. Surf. B. Bioint. 2019, 174, 42. codice Scopus: 2-s2.0-85056226604; Doi: 10.1016/j.colsurfb.2018.10.051
[29] E. Cova, L. Pandolfi, M. Colombo*, V. Frangipane, S. Inghilleri, M. Morosini, S. Mrakic-Sposta, S. Moretti, M. Monti, Y. Pignochino, S. Benvenuti, D. Prosperi, G. Stella, P. Morbini, F. Meloni Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: an in vitro study. Int. J. Nanomed. 2019, 14, 773. codice Scopus: 2-s2.0-85061749666; Doi: 10.2147/IJN.S186344
[30] P. Das, P. Fatehbasharzad, M. Colombo, L. Fiandra, D. Prosperi Multifunctional magnetic gold nanomaterials for cancer. Trends Biotechnol. 2019, 1757, 16. codice Scopus: 2-s2.0-85062646822; Doi: 10.1016/j.tibtech.2019.02.005
[31] V. Codullo, E. Cova, L. Pandolfi, S. Breda, M. Morosini, V. Frangipane, M. Malatesta, L. Calderan, M. Cagnone, C.Pacini, L. Cavagna, H. Recalde, J.H.W. Distler, M. Giustra, D. Prosperi, M. Colombo*, F. Meloni, C. Montecucco Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis J. Controlled Rel., 2019, 310, 198-208. codice Scopus:; Doi: 10.1016/j.jconrel.2019.08.015