Staff: Francesco MantegazzaDomenico SalernoValeria Cassina,  Claudia Marrano
Non-permanent staff: Claudia Corti,  Enrico Buglione

The research activity is devoted to the study of the nanomechanical properties of single molecules and single cells. The aim is to provide quantitative information about complex and unknown relevant biophysical issues at the nanoscale level.
The techniques employed in the Lab are Magnetic Tweezers (MT), Atomic Force Microscopy (AFM) and advanced confocal microscopy. MT is a single molecule technique which allows exerting forces in the range of pN on a single biomolecule. For example, MT can measure the force and the torque necessary to promote the nanomechanical melting of DNA. In addition, MT can follow the dynamics of the folding/unfolding process that a single protein undergoes in the presence of an external mechanical stress. AFM allows acquiring topological 3D images of samples with nanometric resolution. This technique is particularly useful in the study of DNA morphology, protein aggregation and fibrillation, protein- DNA interaction or characterization of biomaterials. In addition, AFM in force spectroscopy mode can characterize the cell stiffness, for example related to the neoplasticity of the cells, or the protein stability against stretching forces, by mechanical unfolding experiments. The advanced confocal microscopy (Zeiss Cell Observer equipped with a Yokogawa CSU X1 spinning disk and a dual-color sCMOS camera) allows fast acquisition of confocal images at high resolution and high speed.

The principal fields of interest involved in the NANOMIB center are the following:
1. DNA compaction inside nucleus.
2. Elasticity of cancerous cells
3. Aggregation of Abeta amyloid and fibrils characterization.
4. DNA superstructures (G-quadruplexes).
5. Mechanical stability of intrinsically disordered proteins.
6. Characterization functionalized nanoparticles.



1) Cristofalo, M., Kovari, D., Corti, R., Salerno, D., Cassina, V., Dunlap, D., Mantegazza, F. “Nanomechanics of Diaminopurine-Substituted DNA” Biophysical Journal, 116, 760-771, (2019)

2) Arenas-Guerrero, P., Delgado, A.V., Donovan, K.J., Scott, K., Bellini, T., Mantegazza, F., Jiménez, M.L. “Determination of the size distribution of non-spherical nanoparticles by electric birefringencebased methods” Scientific Reports, 8, 9502, (2018)

3) Misiak, M., Mantegazza, F., Beretta, G.L. “Methods for elucidation of DNA-anticancer drug interactions and their applications in the
development of new drugs” Current Pharmaceutical Design, 22, 6596-6611, (2016)

4) Salerno, D., Beretta, G.L., Zanchetta, G., Brioschi, S., Cristofalo, M., Missana, N., Nardo, L., Cassina, V., Tempestini, A., Giovannoni, R., Cerrito, M.G., Zaffaroni, N., Bellini, T., Mantegazza, F. “Platinum-Based Drugs and DNA Interactions Studied by Single-Molecule and Bulk Measurements” Biophysical Journal, 110, 2151-2161, (2016)

5) Cassina, V., Manghi, M., Salerno, D., Tempestini, A., Iadarola, V., Nardo, L., Brioschi, S., Mantegazza, F. “Effects of cytosine methylation on DNA morphology: an atomic force microscopy study” BBA – General Subjects 1860, 1-7, (2016)

6) Gregori, M., Orlando, A., Re, F., Sesana, S., Nardo, L., Salerno, D., Mantegazza, F., Salvati, E., Zito, A., Malavasi, F., Masserini, M., Cazzaniga, E. “Novel Antitransferrin Receptor Antibodies Improve the Blood-Brain Barrier Crossing Efficacy of Immunoliposomes” Journal of Pharmaceutical Sciences, 105, 276-283, (2016)

7) Gregori, M., Bertani, D., Cazzaniga, E., Orlando, A., Mauri, M., Bianchi, A., Re, F., Sesana, S., Minniti, S., Francolini, M., Cagnotto, A., Salmona, M., Nardo, L., Salerno, D., Mantegazza, F., Masserini, M., Simonutti, R. “Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier in Vitro” Macromolecular Bioscience, 15, 1687-1697, (2015)

8) Zanella, A., Castagna, L., Salerno, D., Scaravilli, V., El Sayed Deab, S.A.E.A., Magni, F., Giani, M., Mazzola, S., Albertini, M., Patroniti, N., Mantegazza, F., Pesenti, A. “Respiratory electrodialysis a novel, highly efficient extracorporeal CO2 removal technique” American Journal of Respiratory and Critical Care Medicine, 192, 719-726, (2015)